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Transcritical riddling in a system of coupled maps
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The transition from fully synchronized behavior to two-cluster dynamics is investigated for a systém of
globally coupled chaotic oscillators by means of a model of two coupled logistic maps. An uneven distribution
of oscillators between the two clusters causes an asymmetry to arise in the coupling of the model system.
While the transverse period-doubling bifurcation remains essentially unaffected by this asymmetry, the trans-
verse pitchfork bifurcation is turned into a saddle-node bifurcation followed by a transcritical riddling bifur-
cation in which a periodic orbit embedded in the synchronized chaotic state loses its transverse stability. We
show that the transcritical riddling transition is always hard. For this, we study the sequence of bifurcations that
the asynchronous point cycles produced in the saddle-node bifurcation undergo, and show how the manifolds
of these cycles control the magnitude of asynchronous bursts. In the case where the system involves two
subpopulations of oscillators with a small mismatch of the parameters, the transcritical riddling will be re-
placed by two subsequent saddle-node bifurcations, or the saddle cycle involved in the transverse destabiliza-
tion of the synchronized chaotic state may smoothly shift away from the synchronization manifold. In this way,
the transcritical riddling bifurcation is substituted by a symmetry-breaking bifurcation, which is accompanied
by the destruction of a thin invariant region around the symmetrical chaotic state.
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I. INTRODUCTION formed by Bohret al. [14] who simulated 256 interacting
nephrons on a parallel computer. More recently, Pikovsky
et al. [15] have performed a numerical study of synchroni-
In physics, biology, and other fields of science one ofterzation phenomena ir_1 a population of 3608000 globally
encounters systems in which a large assembly of oscillatorgoupled Rssler oscillators. They demonstrated that the
through their mutual interaction produce different forms of€émergence of coherent behaviand, hence, of a nonvanish-
collective behavior at the macroscopic lefek-3]. Examples g macroscopic mean fields related to a synchronization
of this type of system may most easily be found in the Iiving?fotlhe pha?es oftth%|nhd|V|duaI_;)sc(:Jl_L?tors t\llvheredas the ?]mptl_l-
world, e.g., the phase-locking of chirps of neighboring male udes continue to benave quite difierently and are chaotic
; ) . TlG]. With further increase of the coupling parameter, ampli-
of certain species of grasshoppé#d, the widespread syn- - . : .
; . . ; . _tude synchronization of the interacting oscillators can occur,
chronous calcium oscillations associated with the burstln% dal b f g | d b
electrical activity of pancreati@ cells [5], or the recently nd a farge numoer o coexisting custere. states may be
reported sustained glycolytic oscillationé in suspensions OPbserved. This was shown by Zanette and Mikhallt for
P glycolyt pensic a system of 1000 globally coupled Bler oscillators. At a
yeast cell§6]. However, similar phenomena also arise in the_. . .
; . . X first sight, the assumed globé&br all-to-all) coupling may
study of Josephson junction arralg|, in multimode laser . . -
; . appear a little unusual. However, it represents a realistic cou-
systemd 8], and in charge density wav¢s].

In general, the individual oscillators of the ensemble will pling type, in particular, in many biological systems where

not be identical, but their parameters will be distributed overthe celis(or functional units are stimulated by signals that

o L . . are controlled by the total activity of these elements.
certain intervals. Similarly, the interaction network may also ; . ; :
) ; S To fully account for the high-dimensional dynamics of a
have an inhomogeneous structure with combinations of locg| . : . . i .
4 . : arge population of interacting chaotic oscillators is beyond
and global coupling mechanisms and with more or less ran; . - .
L . L . .~ the range of present understanding. Such systems will typi-
dom variations in the individual coupling strengths. In view

of obtaining a better understanding of problems of this na_cally exhibit an extremely large number of coexisting limit-
INg ¢ . 9ot p . ing states, each characterized by its own basin of attraction.
ture, a significant number of investigators have studied th X S
. ; . : ome of the states may be point cycles or quasiperiodic at-
properties of large populations of self-sustained oscnlators[;r

. . actors (tori), and others may represent various forms of
[10-12. In particular, it has been shoyfi3] that the onset synchronous chaotic states. Among these there may be Mil-

of mutual entrainment, which occurs when the interaction . ; X J R
exceeds a certain threshold, bears certain analogies with nor attraf:_tor$18] fo_r which the l_)agl_ns are riddied with ini-
’ tfAl conditions leading to other limiting statg€%9].

second-order phase transition.

However, under far-from-equilibrium conditions, besides
self-sustained oscillations, each element in the ensemble may
exhibit complicated bifurcation scenarios leading to deter- As a simplified approach to the above problem, Kaneko
ministic chaos and to a variety of coexisting solutions. A[20] has considered a symmetrical system Nbfglobally
preliminary study of coupled chaotic oscillators was per-coupled one-dimensional magsscillators

A. Ensembles of coupled chaotic oscillators

B. Clustering in globally coupled maps
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e N However, it says nothing about the stability of these states in

Xj(n+1)=(1—¢)f(x;(n))+ N Z f(xj(n)), (1)  the full N-dimensional phase space, i.e., about their possible

=1 break-up into three- or higher-dimensional cluster states. In-

deed, any of the two-cluster states may be unstable in the
N-dimensional phase space if ofer more of the corre-

sponding transverse Lyapunov exponents is positive. In the

. ! O - ~ present paper we shall not concern ourselves with this prob-

can generate chaotic dynamics for the individual oscillator ingy, (which has been the subject of a number of recent in-

the absence of coupling. The simplest form of asymptotiq egtigationg21]). Instead, we shall consider the mechanisms
dynamics that can occur in systed) is the fully synchro- joqved in the transition from one- to two-cluster dynamics

nized (or coherent behavior in which all elements display fq the whole range of possible distributions of the oscillators
the same temporal variation. In this case the motion is répaqyeen the two clusters. We shall also provide a detailed
stricted to a one-dimensional invariant manifold, the maing, erview of the types of two-cluster dynamics that can occur

diagonal in _phase space. . as the parametets andp are varied.
For certain values of the coupling parameter, the state of

full synchronization may attract all or almost all initial con-
ditions. For other values of, different types of clustering
are observef0], i.e., the population of oscillators splits into In the case of symmetrical linear coupling
groups with different dynamics, but such that all oscillators

wherei=1,... N is a space index for th&l-dimensional
state vectox(n)={x;(n)}}.,. &R is the coupling param-
eter, andf:R—R is a one-dimensional nonlinear map that

C. Symmetrically coupled maps

within a given group asymptotically move in synchrony. x(n+1)=f(x(n))+ely(n)—x(n)],
Two-cluster behavior, for instance, is characterized by the
dominance of dynamics for which y(n+1)=f(y(n))+e[x(n)—y(n)], (4)
def we have previously described the processes by which chaotic
Xip=Xi,= - =X =X, synchronization is lost when the one-dimensional mhap
' given by the logistic map(x) =ax(1—x) [22,23. We have
def also presented different scenarios for the local and global
Xiy =X = =X =Y (2)  bifurcations that take place after the first transverse destabi-

lization of a periodic orbit embedded in the synchronized
chaotic state. In this connection the rolealfsorbing areas
was emphasized in restraining the dynamics of the coupled
?nap system, once the chaotic synchronization breaks down
[24]. The notion of an absorbing area derives from the theory
‘of two-dimensional noninvertible mapg5] and refers to an
attracting invariantor semi-invariantregion of phase space
that absorbs all or almost all trajectories from a neighbor-
hood in a finite number of iterations, and from which trajec-
tories can never escape. Absorbing areas are bounded by

with N; and N,=N—N; denoting the number of synchro-

first type of clustering to occur as the coupling parametisr
reduced, and the state of full synchronization breaks down

Under the conditiong2), the coupled map systerfl)
transforms precisely into a system of two coupled one
dimensional maps of the form

x(n+1) x(n) . . .
= segments otritical curvesthat are obtained as successive
y(n+1) y(n) images of the curves in phase space where the Jacobian of
. the two-dimensional, noninvertible map vanishes. Moreover,
:{ FOx(n))+pel fy(n) = f(x(n))] ) parts of the boundary may be made up by unstable manifolds
f(y(n)+(1—p)e[f(x(n))—f(y(n))] of saddle cycles. Recently, Ashwin and Tef86] proposed

3) a potential extension of the concept of absorbing areas,
termed absorbing regions, and discussed their relations to
Hence, we can study the breakdown of full synchronizaweak and Milnor attractors.
tion and the appearance of two-cluster dynamics by means of The case of two symmetrically coupled logistic maps with
system(3) with parametemp describing the distribution of nonlinear coupling has been considered by Astakabal.
oscillators between the two clusteréMore precisely,p [27]. They have followed some of the bifurcations that take
=N, /N denotes the fraction of the total population that syn-place after the first transverse destabilization of a low-

chronizes into state.) For N=3, for example, with two Periodic synchronous saddle cycle in the diagortal
def def ={(x,y)|x=y}. A subsequent papée8] studied the influ-

ence of a parameter mismatch on the desynchronization tran-
sitions in the same system.

e
clustersx;=x, =x and xz =Yy, the dynamics of Eq(1) is
described by Eq(3) with p=1/3. Clearly, forN=3, two-
cluster dynamics can be realized 3t/(2!1!)=3 different
ways. Hence, we have three two-cluster states depending on
the index of subspaces. For larger valuedNpthe possible
realizations of a given cluster distribution grow very rapidly.  As described above, the purpose of the present paper is to
System (3) describes the dynamics of any of the study the transition from fully synchronized to two-cluster
NI/[N1!'(N—=Nj)!] two-cluster states defined by E®). dynamics in a system given by E) for an arbitrary dis-

D. Outline of the paper
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tribution of the sites between the two clusters, i.e., for arbi-
trary values of the asymmetry parameper [ 0,1]. For sym- n S P
metrically coupled, identical maps p&3), the first
transverse destabilization of a saddle cycle embedded in the
synchronized chaotic statand, hence, the transition to rid- I
dling) occurs via a transverse period-doubling bifurcation or 0
via a transverse pitchfork bifurcation. The presence of asym-

metry in the coupling [f+ 3) does not change the general

form of the transverse period-doubling bifurcation. The Q
transverse pitchfork bifurcation, on the other hand, is trans- , :
formed into a saddle-node bifurcation leading to the forma- €rd €hd

tion of a couple of point cycles off the synchronization mani- &
fold. The riddling bifurcation hereafter becomes transcritical, FIG. 1. Transverse bifurcations of the fixed pditlying in the
€., it involves th? exchange of stability between one of t.hesynchronous state, for the map(3) in the case of symmetrical
just-appeared point cycles and the saddle cycle on the d'a%'oupling (©=1). To the left(at =5..), a supercritical period-
onal. ,

. . doubling bifurcation takes place giving rise to a saddle period-2
We study the sequence of bifurcations that the asynchroéyde v,={S,,S,}. To the right(at e=s,.4), a supercritical pitch-

nous point cycles produced in the saddle-node bifurcatiofyy pifurcation occurs giving rise to two saddle fixed poiRtand

undergo as the coupling strengthand the asymmetry pa- q The variabley is defined asy=(y—x)/2. Dashed lines ay
rameterp are varied. We show how the unstable manifolds— g are for the repelling fixed poirf,.

of one or both of these cycles control the global dynamics of

the system after riddling has occurred and, hence, the char={(x,y)[x=yel} is asymptotically stable. When the coupling

acter of the riddling bifurcation. The transcritical riddling parametere varies beyond this interval, the synchronous

bifurcation is found to always be hard. statel , loses its asymptotic stability. In the literature such a
In the case where there is a parameter mismatch so th@gss of stability is referred to as a riddling bifurcation

two slightly different mapsf, (x) or f, (x) are associated [29,30. As described in a number of pap¢@2,27,29-32

with the individual space pointg;, i=1,... N, the tran- the riddling bifurcation takes place when some saddle cycle

scritical riddling bifurcation is replaced by two saddle-nodeembedded in the synchronous chaotic state loses its stability

bifurcations. Alternatively, if the sign of the parameter mis-in the direction transverse to the diagonal. Often the saddle

match is different(in relation to the sizes of the two sub- periodic cycle that first loses its transverse stability is of

populations, the saddle cycle involved in the transverse de-relatively low periodicity[33]. The riddling bifurcation for

stabilization of the synchronized chaotic state smoothlythe map(3) with symmetrical couplingf=3) was studied,

shifts away from the synchronization manifold. Again we e.g., by Astakhowet al. [27]. Below we describe the corre-

show that the stable and unstable manifolds of the asynchrsponding bifurcation in the case of nonsymmetrical coupling

nous point cycles play an essential role for the dynamics ofp+3). As we shall see, it can differ essentially from that of

the system. In this way, the transcritical riddling bifurcation the symmetrical case.

is replaced by a symmetry-breaking bifurcation that destroys

the thin invariant region existing around the nearly symmet- A. Symmetrical coupling

ric chaotic state. . . .
The paper concludes with a short description of the bifur- For a>a,=3.678, If the mayf, has a one-piece chaotic

cations of the attractors that are placed away from the diaqqttractorl, the riddling bifurcatior(loss of asymptotic stabil-

onal and, therefore, are responsible for the dynamics in théy) of the one-piece SyﬂChrOilOU*S st D tal_<es place
two-cluster states of the original-dimensional system. yvhen th.PT sqddle f|xt_ad pc.)'RO(X ,X*) embedded iy loses
its stability in the direction transverse @ and becomes a

repellor. Herex* =1— 1/a is a fixed point of the logistic map
f,. It can easily be computed that the bifurcation occurs at
Consider the two-dimensional coupled map syst@n e=e;q=1*1/(a—2) when the transverse eigenvalue
with f(x) defined as the one-dimensional logistic map=(2—a)(1—e¢) of the fixed pointP, becomes greater than
f.(x)=ax(1—x). Let the parameteac(3,4) be chosen 1 in absolute value.
such that the mapf:x—f,(x) has a chaotic attractor Consider systeni3) with the symmetrical coupling, i.e.,
IC[0,1]. Transverse to the diagon®l={(x,y)|x=y} the for p=3. A schematic diagram of transverse bifurcations of
eigenvalue of the mag (3) is equal tov, =f/(x)(1—¢). the fixed pointP, is presented in Fig. 1. At=¢4 the
So, fore=1 we haver, =0, and the diagondD is super- riddling bifurcation involves a transverse period-doubling bi-
stable. Moreover, at=1 any initial point (0),y(0)) furcation of the fixed poinP, (the transverse eigenvalue of
e R? is mapped ont® in a single iteration under the action Py leaves the unit circle through 1). The bifurcation gives
of F. rise to the birth of an antisymmetric period-2 saddle cycle
This superstability of the diagonal obviously ensures they,=1{S;,S,} whose points gradually move away from the
existence of an interval for the coupling parametearound  diagonal where continues to decrease. At=¢}, the rid-
e=1 where the fully synchronous chaotic stalg,  dling bifurcation has the form of a transverse pitchfork bi-

II. THE RIDDLING BIFURCATION
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FIG. 3. Diagram of the riddling bifurcation when the fixed point
0.1 Pyelp loses its transversal stability through a supercritical period-
0.1 X 1.0 doubling bifurcation ate=¢;4 giving rise to a saddle period-2

FIG. 2. Absorbing aregcrosshatchedfor the mapF in the cycle 72:381’82}' Herlﬁ 7;=f_(y;x)/:2ﬁ. T?E dashed Iine_aé;;so
symmetric casef(= %) after a supercritical pitchfork bifurcation of corresponds to a repeliing fixed poiRp. The parametep=0.33.

the fixed pointP,. The absorbing area is bounded partly by arcs of

the critical curved., andL, and partly by unstable manifolds of the Sal eigenvalue of any symmetrical point cycle only depends
asynchronous point cycleé? and Q born in the pitchfork bifurca- 0N the sum of coupling parameters that for the syst8m
tion. The parameters aee=3.8, p=0.5, ande =1.57. equalsd=ep+e(1—p)=¢. Therefore, the parameter points

, , e=g,4 of the riddling bifurcations are the same for a
furcation (the transverse eigenvalue Bf, becomes greater [0 ri‘]’ g 24

than +1). After the bifurcation, two saddle fixed poinis

and Q close to the diagonal appear. They again move awa It is well known[34,35 that period-doubling is a generic
from the diagonal wher increases. %lfurcanon. Hence, the riddling bifurcation at=¢,,4 per-

Both the period-doubling and the pitchfork transverse bj-SIStS under perturbations of the system, and it maintains the
furcations at =¢ ;4 are supercritical. It follows that the cor- formlof a perlod—dou_bllng even if the symmetry s broken
responding riddling bifurcations aseft[23,31, i.e., imme- (p# 3). As illustrated in Fig. 3, an asymmetric coupling only

diately after the bifurcation there exists an invariant region Oic_aus/gsf a srr;]all d(_jlfferenlcef bﬁtwee_n ;he d;watfl@;ﬂs%y
infinitesimal transverse size, called thebsorbing area x)/2 from the diagonal of the pointS; and S, for the

23,24, which envelops all trajectories starting close to theperiod-Z saddle cyclg,={S,,S;}. N : .
E:haot?c attractot  in ,[r;]e diagojnal g Let us hereafter focus on how the riddling bifurcation
An example of the absorbing area that appears after thg2Used by the supercritical pitchfork &t &1 Changes with

supercritical pitchfork riddling bifurcation is crosshatched in the introduction of an asymmetry in the coupling, i.e., for
Fig. 2. As illustrated in this figure, the boundary of the ab-P7 2. TO investigate the changes of the transverse pitchfork

sorbing area is partially composed wfistable manifoldef ~ Pifurcation we use a method recently proposed by Maist-
the antisymmetric saddle fixed poirfsandQ, and partially ~ "enkoetal. [23]. _ _
(near the corner pointsby the critical curves Ly and L, Using the linear variable transformation
which are the first and the second iterationg=gf the locus
=(v+ —(v—
of points where the Jacobian of the mipanishes: §=(y 32, p=(y=x)/2 ©®

Lo={(x,y)|x=1/2 or y=1/2}. (5  to Eq.(3), we can rewrite the map in the new variablesg,

The absorbing area that appears after the period-doubling'
bifurcation has a similar shape. The only difference is that
now unstable manifolds of the antisymmetric period-2 saddle ~ &
cycle y,={S;,S,} take part in creating the boundary of the it —
absorbing area.

Just after the supercritical riddling bifurcatiéwhether it ) - ,
is caused by a transverse period-doubling or pitchfork bifurWheref(§)=a&(1—¢) is the logistic map and’(¢)=a(1
cation, the transversal size of the absorbing area is infini-~ 2¢) its derivative. The variable chang®) is a simplem/4
tesimal. When moving away from the bifurcation point its Fotation of phase space such that the diagoray for the
width grows~ |e —&,74|. This width determines the ampli- original mapF corresponds to the axig=0 in the mapF
tude of the maximal possible bursts away from the synchro(plus a scaling with the factoy2).
nized state. For the mapF the riddling bifurcation at=¢/;, takes
place when the transverse eigenvalye=f'(£*)(1—¢) of
the fixed pointPy(&*,0) passes throughr1, where &*

The bifurcation pointg =¢,;4 of the riddling bifurcations =x*=1—1/a. For the considered values of parameter
are independent op. Indeed, as noted if82], the transver- e (3,4) the fixed point* is unstable for the logistic mafy, .

f(&)+1(&)(2p—en—arn®

F(O(1-e)y Y

B. Asymmetric coupling
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Therefore, the absolute value of the longitudinal eigenvalue

v =f"(x*) of the fixed point|50 is always greater than 1. M P
Let the coupling parameter be such that the fixed pint

is a transversely attracting saddle, ile.,| <1 and the syn-

chronous chaotic state is still before the riddling bifurcation.

Then, there exists an invariant one-dimensional transversal

manifold W, ={(£&,7)|é=¢(7)} passing througtP,. The 0

Taylor series expansion af(-) in the vicinity of zero is

- Q
4ap(l— ; :
¢(n)=§*+(1—2p)n+L2m772+“', ®) €sn Efid e
VH_VL

A
]
'
]
]
1
1
'
1

where dots denote terms of higher order. From the expansion FIG. 4. Diagram of the transcritical riddling bifurcation when

: , . ) -
above it follows that the manifoltV, in the vicinity of the 1€ fixed poinPo(x*,x*) e loses its transverse stability through
) o~ . 2 ided that th the exchange of stability with another solution. The parampter
fixed pointP is smooth up taC provided that IN€ NONTESO- 3 s fixed. Forp>3 the bifurcation diagram changes symmetri-
nant conditionsy# v, andy# v{ are fulfilled.

cally with respect to the liney=0. Dashed curves correspond to

Having calculated asymptotically the invariant transverseepelling fixed points, and solid curves to saddle points.
manifold (8) we can study the action of the two-dimensional

map (7) along it. In this way we obtain a one-dimensional producing two fixed points® and Q. Both of these fixed
map h: »—h(#) that is a restriction of onto W, in the points are situated above the diagoDaf p<3, and under if
vicinity of zero. The expansion of the méinear zero up to  p>3. With further increase of, the repelling fixed poin@

the order 3 has the following form: approaches the diagonBl At =g, it passes through the
saddle fixed pointPye D. The fixed pointsP, and Q ex-
h(n)=v, n+2a(2p—1)(1-¢) 7 change their stability. After the transcritical riddling bifurca-
) tion, the symmetrical fixed poirR, on the diagonal becomes
n 8a’p(1-p)(1-e) T (9) @ repelior, and the fixed poir@ becomes a saddle lying
v — v below (for p<3) and abovefor p>3) the diagonaD. The

bifurcation diagram for the transcritical riddling is shown in
The nonresonant conditiong# v, and v # v? guarantee Fig. 4.
C3-smoothness of the ma(-) near zero. In the variables £, %) [defined in Eq(6)], the coordinates
Bifurcation of the fixed pointz7,=0 for the one- of the fixed pointsP(¢",7") and Q(¢7,7") can be ex-
dimensional majh corresponds to the transverse destabilizajpressed as
tion of the fixed pointP, for the original two-dimensional

mapF given by Eq.(3). §t23+ —1 (10)
Let p=3, i.e., the coupling is symmetrical. Then the qua- 2 2a(e—-1)’
dratic term in Eq.(9) vanishes. It immediately follows that
before the bifurcation, at<e, 4, the maph has a single
stable fixed pointpy=0, whereas after the bifurcation, at _ + N2 . _1\2_ 4.2 —
>gy, the fixed pointy, is unstable and in its neighborhood ni:(l 2p)e=\(@-D)He—1)"~4ep(l p).
there appear two new nontrivial fixed points that are stable. 2a(e—1) 11
Therefore, with symmetrical coupling the riddling bifurca- (1D
tion has the form of a supercritical pitchfork bifurcation as The fixed pointsP andQ exist fore=e,,, where
shown in Fig. 1.
When the symmetry of the ma(3) is broken, the bifur- (a—1)2+2(a—1)\Jp(1—p)
cation diagram undergoes an essential change. Indeed, it can Esn= 5 (12
be shown from Eq(9) that for p#%, and for appropriate (@=1)"—4p(1-p)

values of coupling parameter<sr+id, the one-dimensional
map h acquires two additional nontrivial fixed points. Both
of them are positive fop<3 and negative fop> 3. One of
the nontrivial fixed points being unstable approachgs 0
as e—ely and passes through the fixed poipt at e
=gy in a transcritical bifurcation. In this bifurcation the  In this section we shall show that the riddling bifurcation
interacting fixed points exchange their stability. in the system(3), if caused by the transverse transcritical
For the original two-dimensional m&g@) the riddling bi-  bifurcation of Py, is always hard. This implies that immedi-

furcation obeys the following scenario, see Fig. 4. Whenately after the bifurcation there will be a path for the trajec-
increasing the coupling parametebeyond 1, a saddle-node tories to go far away from the attractbg C D, even if they
bifurcation occurs at some value of the parametersg,,, start in a very thin neighborhood of I . In other words,

is the parameter value of the saddle-node bifurcatioR.of

Ill. GLOBAL DYNAMICS AFTER A TRANSCRITICAL
RIDDLING
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any slight coupling asymmetry transforms the soft riddling
bifurcation caused by a supercritical pitchfork bifurcatia
p=13) into a hard riddling transition caused by the transcriti-
cal bifurcation(at p# 3). We presume that this type of hard
bifurcation will be typical for coupled identical oscillators as
soon as the coupling is nonsymmetrical.

A. Absorbing areas

To throw light on the properties of the transcritical rid-
dling bifurcation, the global dynamics of the noninvertible
map F given by the systeni3) has to be examined. In this
connection, the role adbsorbing areadas to be taken into
account 24].

Absorbing areas play a fundamental role in the theory of

two-dimensional noninvertible map&5] due to the follow-
ing strong attracting property: they absorb all or almost all

trajectories from their neighborhoods and retain these trajecs—Cr

tories forever. Absorbing areas do not arise in diffeomor
phisms(since there are no points at whi€i-=0).

PHYSICAL REVIEW E 63 036201

1.0
Ly
Y
0.1
0.1 X 1.0

FIG. 5. Absorbing areas! (crosshatchedand .A; after a tran-
itical riddling bifurcation. Smaller ared is bounded by seg-
ments of unstable manifolds of saddle fixed poirtandQ, and by
the segmentk; andL, of critical curves. Larger absorbing arela

The role of the absorbing area in connection with chaotiGs pounded only by the critical curvas, andL,. The parameters
synchronization in systems of coupled noninvertible mapgrea=3.8, ¢=1.57, andp=0.45.

was emphasized in a recent paper by Maistresikal. [24].
Here, it was shown how the existence of an absorbing area
important for the distinction between locally and globally
riddled basins of attraction as well as between subcritical an
supercritical blowout bifurcationg30,36. Only in the pres-
ence of an absorbing area can one observe the phenomen
on-off intermittency and attractor bubbling.

WhenN logistic (or, more generally, noninvertiblenaps
are coupled, it is easy to see that the resulbikdimensional
mapFy will be noninvertible as well, i.e., there exist critical
hypersurfaces such thatFy=0. Hence, when analyzing the
global dynamics of-\ one may expect the existence of “ab-
sorbing volumes” —N-dimensional invariant regions whose
boundaries are forme@ompletely or partiallyby images of
the critical hypersurfaces. However, to the best of our know
edge, so far only two-dimensional noninvertible maps hav
been analyzed on this property. A generalization of the con
cept of an absorbing area to the caséNedimensional non-
invertible maps remains an interesting but challenging prob
lem.

B. Absorbing areas for the transcritical riddling

Consider the synchronized chaotic sthteafter the tran-
scritical riddling but before the blowout bifurcatiqisome-
times this regime is called the regime of weak synchroniza
tion, see, e.g., the paper by Maistrengal. in Ref. [21]).
The chaotic attractoly is still attracting in average, i.e., its
Lyapunov exponenk ; responsible for the growth of trans-
verse perturbations is negativgee Sec. IV for details For
example, ifa=3.8 the riddling bifurcation takes place at
~1.55, and the synchronous stateis attracting in the av-
erage up taz~1.65 where\ | changes its sign from negative
to positive, and the blowout bifurcation takes place.

In the parameter interval 1.5%=<1.65 (@=3.8), the
statelp is a measure-theoretic Milnor attractor: It attracts a

a

ﬁaction are still far from being understood in details. Certain
rogress has been made in the case of piecewise-linear maps.
n particular, Pikovsky and Grassberd&7] have conjec-

iy d that for two coupled tent maps, in the regime of weak

synchronization, periodic points are dense in the vicinity of

the synchronous chaotic state. A proof of this conjecture was

recently announced by Glendinnihg8.

A state portrait of systen(3) after the transcritical rid-
dling bifurcation is presented in Fig. 5. There exists an in-
variant regionA (crosshatchedaround the chaotic attractor
IpCD. As before, this invariant region is referred to as an
absorbing are425]: its boundary is composed partially of

I_segments(arcs) of unstable manifolds of the saddle fixed

ointsP andQ, and partially of segments of two consecutive
F images of the critical curvek, denoted byL; andL,,
respectively. For simplicity, we shall refer to, andL, as
critical curves too. Inspection of Fig. 5 also shows how the
absorbing aread is embedded in a larger absorbing aséa
whose boundary is delineated entirely by the critical curves
L, andL,. In certain parts of the phase space, the boundaries
of the two absorbing areas coincide.

Our calculations provide evidence that this type of phase
portrait containing two nested absorbing areas is typical for
system(3) in the parameter region after the transcritical rid-
dling bifurcation and before stabilization of the fixed pdmt
(see Fig. 7. When a trajectory starts near the chaoticlggt
after a number of iterations it will typically fall in a small
neighborhood of the fixed poiRye |5 and here it attains a
finite probability of going away from the diagonal along the
separatrix connecting’, with P (or alternativelyP, with
Q). The deviation ofP from the diagonal is larger than that
of Q. Hence, the distance t® provides an upper bound to
the maximum amplitude in the burst of the trajectories away
from the synchronous state. Moreover, at the point of transi-

positive Lebesgue measure set of points from its neighbortion the distancd® P, is finite, and right after the transition,

hood[19,30. The topological properties of the basin of at-

bursts of finite amplitude can therefore be observed. This is
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1.0 der the action of throughout the whole regiodl. Indeed,
there is a separatrixHy,P) connectingP, with P. So, a
positive measure set of points from the neighborhood will
move towards® along (Pq,P). After approachind® at some
distance, these trajectories go along the unstable manifolds
of P and then fold on the critical curvie; (those moving to
the righd or onL, (those moving to the left Then they cross
the diagonal and pass near the right boundary d¢#hich is
created by the continuation of the unstable manifold® nf
After this, as computer simulations show, trajectories begin
to move between the upper-right and the lower-left cones of
A.
While restrained to the absorbing ardathe trajectories
(more precisely, the invariant curves created by the trajecto-
0.1 ries) cross the separatrixPp,P). This implies that some
0.1 X 1.0 points of the trajectoriesthose near the intersectionsan
, again be involved in the motion alond?§,P) in the direc-
FIG. 6. Absorbing areal (crosshatchedat the moment of tran-  ion towardsP. And the situation described above will be
scritical riddling bifurcation. Parameters aae- 3.8, ¢ =1.555, and repeated giving rise to new intersections of stable and un-
p=0.4. stable manifolds oP. Hence, intersections of stable and un-
stable manifolds oP are evident from our numerical simu-
in contrast to the symmetrical case, where the amplitude oftions and lead to a complicated dynamics of the rap

the bursts grows gradually with the parameter. inside. A. However, we have not looked in detail for possible
homoclinic tangencies or considered their persistence. It
C. Creation and development of the absorbing areas would be interesting to clarify this question to see whether

Newhouse regiong39,40 exist for the system of two

Let us follow the evolution of the global dynamics of the o
coupled logistic maps.

map F, when the control parameter passes through the .
bifurcation values 4 of the transcritical riddlingFig. 4). As Thus, the boundary of the absorbing avdacan be ap-

. . . roached, with any given precision, by trajectories originated
we shall see, the sequence _of bifurcations pbserved 1d|ffer% any small neighborhood of the fixed polg belonging to
from that of the analogous in the symmetrical case 3

. - . the attractol ; in the diagonal. The location of the boundary
reported in[27] and outlined in Sec. Il A above. . D" o ) X
Before the riddling bifurcation, the attractbg in the di- gives exact limits for the deviations of the trajectories from

agonal is asymptotically stable for systdB): it attracts all the diagonal when they enter into asynchronous bursts.

trajectories from a sulfficiently small neighborhof&D]. At I—_|enpe, b(_agmmr_]g right froT the moment of the transcritical
. . £ . riddling bifurcation ate=¢,,y, the amplitude of the asyn-
the bifurcation moment=¢ 4, the attractorl loses its

transverse stabilityFig. 6). The smallest invariant region chronous bursts is of the ord@(1). We conclude that the

envelopingl, is now an absorbing ared created by the transcritical riddling bifurcation is always hard.
b ed : ; - . )
unstable manifolds of the saddle fixed paiand, partially, This property differs from the analogous riddling bifurca

o o tion in the symmetrical casp=3 as well as from the rid-
2y thﬁbcrg'cabl ci/lgves.llziand;z{_r;r h|rsn|s itrf;e Iacr;iea; Or: the :cyi[::e dling bifurcation caused by the transverse period-doubling
escribed abovésee rig. [Ne maximal distance of s bifurcation, which is soft or hard depending on the super-
boundary from the diagonal is approximately indicated by

. ) L critical or subcritical nature of the bifurcation causin2s].
:22 3?;;2;?;‘?35 of the saddle fixed pdfits deviation from Let us continue to vary the coupling parametebeyond

the bifurcation values ;4 to observe further changes in the
(1-2p)e+(a—1)%(e—1)2—4e2p(1—p) structure of the absorbing are& After the bifurcation, the
ale—1) . fixed pointQ becomes a saddle and moves down away from
e the diagonal. First, it lies insidegl so that its unstable mani-
. ) folds do not participate in the boundary of. Then, Q
The distance fronP to the lower boundary ofd is clearly  emerges from the interior ofl, and its unstable manifolds
smqller. Nevertheless, as can be seen in Flg.+6, it is positivBegin to contribute to the boundaffjig. 5). The parts of the
beginning from the bifurcation momené=eq Of the  poundary ofA that are created by the manifolds @fmove
transcritical riddling bifurcation considered. This property is down and away. However, due to asymmetpy(1/2), the
due to the facf[ that the lower boundary.éfis created by the  distance to the lower boundary of from the diagonal re-
unstable manifolds of saddfe mains smaller than the distance to the upper boundary given
by the manifolds ofP.

|F’F’0|:\/E

D. Hard transition

Based on the phase portrait in Fig. 6 for the moment of V. RIDDLING AND BLOWOUT TRANSITIONS

riddling bifurcation ate=eg/;q, we claim that any small In this section we describe in more detail the riddling and
neighborhood of the poirfey=Q will eventually spread un- blowout transitions for the chaotic synchronous sthie
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FIG. 7. Bifurcation diagram for the attractéy,, situated above
the diagonal. The crosshatched region corresponds to the parameter
g 9 P P c?osed curve after the transcritical riddling bifurcation. By black

values where the attractd,, exists. Riddling €y~1.555...) ber of periodic orbits belonging to the chaoti ddl
and blowout €,~1.65. . .) bifurcation lines of the one-piece cha- Crosses, a number of periodic orbits belonging fo the chaolic sadale

otic attractori , on the diagonal as well as the curve of saddle-nodePup are indicated. Also shown is the boundary of the semi-invariant
bifurcation of P and Q (Fig. 4) are also shown. LetterR,, R,, absorbing areal that is created by ards,, k=1,. .. ,5that are the
Rz, R4 (By, Ba, Bz, B,) denotep-intervals(separated by dashed images of critical linesL, from (5). Parameters ara=3.8, p
lines) with different types of riddlingblowou? transitions(see text = 0.-27, ande=1.58.

for detailg. Parametea=3.8.

FIG. 8. Synchronous attractdg and its basin boundar§outer

infinity within the former basin ofl,. Note that e.g,
emphasizing the structure of its basin of attraction. Due to>&¢,. Hence, ag is increased, the boundary crisis appears
the obvious symmetry of the map) with respect top=3,  before the contact bifurcation.
we only consider the intervgd €[0,0.5]. To be more con-
crete, let us fix the system parameter 3.8 at that the lo- A. Riddling transitions
gistic mapf is considered to possess a one-piece chaotic As discussed in Sec.

I, the riddling bifurcation of the
attractorl.

AR i tant infl the riddii d bl ('t chaotic synchronous statg is independent op and takes
N important infiuence on the riddiing and biowout tran- place ate =¢,{;=1+1/(a—2). Itis caused by the transverse

.Sm.o.ns IS produceq by the presence of another attre{cor destabilization of the symmetric fixed poirRy(x*,x*)
infinity) whose basin can come close to the diagonal. In par-

* _ — l . . .y
ticular, this concerns an attractéy,, (above the diagonal elp.,x*=1-1/a. For p=3 this occurs via a supercritical

that may coexist with the stable synchronous state and pitchfork bifurcation (Fig. 1), whereas forp[0,1/2) the
S . __transition is transcriticalFig. 4).
as a result, may affect the riddling and blowout transitions. o . . + .
The riddling bifurcation at =&,y may result in a locally

Th - if i i f th
e wo-parameterr,) bifurcation diagram of the attractor or globally riddled basin of ;. This depends on the exis-

Ayp is presented in Fig. 7. Bifurcations of the attractqy, .
are described in more detail in Sec. VI. tence of the atf)sorblrr:g areharound! %j,hagg on the absence
The framework of the bifurcation scenario is the follow- ©F Présence of another attractor within[24]. L
Let us first consider the case when the transcritical rid-

ing. Letp be fixed and consider what happensagacreases . . . . .

starting from 1. The parameter poinp,&) enters into the dI|_ng bifurcation leads to #ocally riddled bggln for the cha-

crosshatched region whose lower boundaryg ats.,, cor- otic synchronous statéy. Such a transition takes place
st when the absorbing ared still exists (that is, before the

responds to the stabilization of the fixed poftborn in a contact bifurcationand there are no other attractors within
saddle-node bifurcation together with another fixed t ) T :
9 pan A. As it can be seen in Fig. 7, for the considered vadue

see Fig. 4. P becomes a stable node and, with further in- . .

crease of, transforms into an attracting focus. Hereafter, it =38, this —occurs if peR,URs=(0.377...:0.9

undergoes a supercritical Hopf bifurcation, and a stable in-U(0'245 o 0.23.....). .

variant closed curve then appears characterized by quasiperi- 1€ difference between the first and the second

odic or periodic dynamics on it. This curve is destroyed withP-intérvals of local riddling is that fope (0.377....:0.9

further increase of, and an attracting chaotic set appears.th€ fixed point has not yft stabilized at the moment of the

The upper boundary of the crosshatched region correspond€ldling bifurcation, i.e.,e;jq<es (Fig. 5). In the second

to the boundary crisis bifurcation, ate.,, of the chaotic ¢asepe(0.24...,0.273 .. .), theattractorA,; has already

attractorA,,. been destroyed through a boundary crisis bifurcation, but the
The upmost last bifurcation curve in Fig. 7 denoted asPsorbing aread still exi~sts, i.€.,8¢<€/g<&con- IN place

“absorbing area crisis” represents the contact bifurcation, abf A,, a chaotic saddlé\,, embedded in the basin of the

e=¢e.on, Of the absorbing areal with the basin of infinity = synchronous chaotic state still exigtsg. 8).

(see[24,25). By destroying the invariant region around the  According to its definitior{30], the basin of the synchro-

synchronous chaotic statg, this absorbing area crisis re- nous statdp, is locally riddled when arbitrarily close to any

sults in the appearance of holes belonging to the basin gfoint in |, there exists a positive measure set of points that
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FIG. 9. Transcritical riddling bifurcation may lead to a globally -0.1 X 1.1

riddied basin of the syr_mhronous stelig W'th the basin Of. the FIG. 10. Globally riddled basin of the synchronous statevith
attractorA,,, above the diagonal. For the given paramefgfsis a . o o - . . .

P . ... _the basin of infinity after a transcritical riddling bifurcation. Basin
closed invariant attracting curve that was born after a supercritica

Hopf bifurcation ofP. The basin oA, is shown in gray. The basin Zleriﬂglty Is shown in gray. Parameters aae-3.8, p=0.245, and
of I is densely filled by “dots” that actually are small-diameter o

regions belonging to the basin &f,,. Parameters ara=3.8, e . L
28_33 andszgl.g. P P “holes to infinity” of a small diameter within the former

basin of the synchronous chaotic stéfe These holes are
. o ~accumulated, in particular, in a neighborhood of the fixed
move away from the diagonal for a finite distance. If there ispoint Q. Hence, in the moment of the riddling bifurcatia@,
no other attractor within the invariant absorbing aéaal-  prings with it part of the basin of infinity to the fixed point
most all of the trajectories should come back to the synchrop < |, . This riddling scenario is similar to what we have
nous chaotic state. Some of them will be attractedi§y  discussed for the case when the basinigfis globally
whereas others will repeat the asynchronous bursts. Suchygdied with the basin ofA,, (Fig. 9). Therefore, immedi-
behavior is produced by the transversely repelling fixed poingtely after the riddling bifurcation, the basin of attraction of

Poelp that has an everywhere dense set of preimagés.in  the synchronous stalg, becomes globally riddled with the
Trajectories starting close to such a set will be mapped, firstyasin of infinity (Fig. 10.

into a sufficiently small neighborhood &f,. Hereafter, they
can move away from the diagonal following the separatrix

) . - . B. Blowout transition
that connects the repelling fixed poiff, with the saddle

fixed pointP [for pe (0.377 . . . ;0.5, see Fig. or with the The blowout bifurcatiorf36] of the attracting chaotic syn-
; A i ; chronous staté corresponds to its transformation into a
gglaotlc saddiep [for pe (0.24... 027 ....), seeFig. chaotic saddlg30]. The bifurcation takes place when the
If peR,UR,=(0.273...0.377)U[0;0.24 ...) the lansverse Lyapunov exponent,
riddling bifurcation leads to @lobally riddled basin of the 1 Kot
synchronous staté,. For pe (0.273...;0.377) one has A =1lim = X In[f'[x(n)](1—¢)| (13
est<erg<ecr, i.€., there exists an attractéy,, above the Koo TN N=0

diagonal in the moment of the bifurcation. The repelling

fixed pointQ, causing the riddling in the transcritical bifur- that is responsible for the average growth of transversal per-

cation withPyelp, brings with it a stable manifold of the turbations, changes its sign from negative to positive. The

attractorA,,, to the diagonalFig. 6). Therefore, there exists calculation is performed on a typical trajectory

a tongue of points, with vortex iy, which belong to the {(x(n),x(n))},—oClp,x(n+1)=f,(x(n)). For the consid-

basin of attraction oA,,. This is illustrated in Fig. 9 where ered parameter value= 3.8, the blowout bifurcation dfy, is

Ayp is an invariant closed curve. The fixed pol§ has an  found to occur ak =gy~ 1.65.

everywhere dense set of preimages$dn(the mapF in I is The blowout bifurcation for the maf8) may demonstrate

noninvertible and mixing It further follows that the tongue different scenarios depending on whether it takes place from

with vortex in Py has preimages in a neighborhood of anya locally or from a globally riddled basin df,. As can be

point of I 5. It follows that arbitrarily close to any points of seen in Fig. 7, for peB;UB;=(0.488...;0.5

I there is a positive measure set of points attracted Qy U(0.3...0.336...) in the bifurcation moment, the basin

This is the case when the basin of the synchronous chaotif |5 is only locally riddled. In this case, the blowout bifur-

statel is globally riddled with the basin o,,,. cation is expected to be supercritical, which means that the
Forpe[0;0.24 . ..) anabsorbing area contact bifurca- chaotic attractor |, gradually spreads into the two-

tion with the basin of infinity takes place before the riddling dimensional phase spagg0]. Indeed, as numerical simula-

bifurcation, i.e..econ<&,4 . After the crisis one can observe tions show, trajectories of the new “swelling” attractér
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FIG. 11. Attractors for the map (3) and their basin boundaries
after a supercritical blowout bifurcations in the presence of a locally
riddled basin. Parameters aae- 3.8, (a) p=0.498, £ =1.658, and 0.1
(b) p=0.33,£=1.67. 0.1 X 1.0

spend most of the time_ close to _the former _attracting SYN-  F|G. 12. Absorbing areky, (crosshatchedhat replaces the cha-
chronous statép, see Fig. 11. This attractdk is bounded  otic synchronous stats, (dashed when the parameter mismatch
by the critical curvesL, that areFX iterations of critical §=0.998 is introduced. Parameters @e 3.8, £=1.538, andp

curvesL defined by Eq(5). =0.4.

If pe(0.488...;0.5, one hag <eg, i.e., the blowout
bifurcation takes place before the stabilization of the fixedar to those for the systenB). A mismatch between the
point P above the diagondFig. 11@]. In the second inter- one-dimensional mapk, andf,, can be introduced as fol-

valpe(0.3...0.336...), ep>e¢, and the blowout bifur-  Jows: a;=a anda,=as. For small mismatches the factér
cation takes place when the chaotic attragigy developed has to be close to 1.

from P has already been destroyidg. 11(b)]. Hence, there It is evident that for the two-dimensional mé&pgiven by

is a chaotic saddIg,, in place of it(see also Fig. BIn this  Eq. (14) the diagonaD is no longer invariant as soon as
case, the chaotic saddkg,, may be included irA. #1. In place of Ip,CD a two-dimensional invariant-

The blowout bifurcation iS.SUbCTitiCQBO] when it occurs - absorbing areiD arises for some range of the Coup“ng pa-
from a globally riddled basin of the synchronous chaoticrameters. Its transverse diameter is small as long &
state Ip. This is the case for peB,UB;  close to 1, and vanishes with—1. We claim that the tran-

=(0.336...;0.488...)U[0;0.3...). For the first scritical riddling bifurcation is replaced by an interior or an
p-interval, in the moment of blowout bifurcation, there exists o ior crisis of the absorbing arég . Moreover, the mo-

an attractorA,, over the diagonal and the basin b IS nent when this happens is shifted with respect to the case
globally riddled with the basin oA, (Fig. 9. Hence, above \ihout mismatch, and this crisis bifurcation is always hard.
the bifurcation, trajectories are typically attracte-quM). .In The above phenomenon can be explained by the follow-
the second casepe[0;0.3...), theblowout bifurcation 4 changes in the global dynamics of the systa#). There
takes place when the basin lgf is globally riddled with the  ar¢ o distinctive cases depending on the sign of the mis-
basin of infinity (Fig. 10. Above the bifurcation, typical tra- match, i.e., if5 is smaller or greater than 1. Fprbelonging

jectories escape o infinity. to the interval[0;3), the majority of maps are of typéal,

V. INFLUENCE OF A PARAMETER MISMATCH and 6<1 implies that most of the maps have the larger non-
ON THE RIDDLING BIFURCATION Imeanty parametea;. Conversely, for5>1,.the Iarger sub-
population of maps have the smaller nonlinearity parameter.
In the previous section we described the riddling and First we fix 5=0.998. When the original syste(8) is far
blowout transitions when the coupling is asymmetrical ( enough below the riddling bifurcation, the mismatch pro-
#3), but the coupled one-dimensional maps are the same. Huces a shift of the fixed poi, by a small distance above
follows that for anyp €[ 0;1] the diagonaD remains invari-  the diagonalPy is still a saddle, and its unstable manifolds

ant under the action of the two-dimensional nap define an invariant absorbing argg of a fairly small trans-
(3)NOW'(;[8 remov”e the rerPalnlng S);mhmbet:y fron:hthe malpverse diametefcrosshatched region in Fig. 12The bound-
we add a small parameter mismatch between the couple - : .
maps. For this, consider the system gry.of I p IS of t.he same type as that of descnbeq in Sec.
' Ill, i.e., it consists partially of the unstable manifold Bf,
x(n+1)="f, (x(n)+pelfa,(y(n)—fa (x(n)], Ia:ui’lgd ;i%rtlally of arcs of critical curves; andL, (see zoom in
Y(n+1)="fo (Y(M)+ (1= p)e[ fa (M)~ fo (y(M)], _ With_ increasingfe, a sa_ddle-node bifurcation chur§ that
(14) gives birth to two fixed point® andQ over the regior  in
a way similar to its description in Sec. Il above. The repel-

where, as beforef,, denotes the logistic map with parameter ling node Q moves towardd ,, and, at some moment
a: fo(x)=ax(1—x). Coupling parametens ande are simi- =g/, two fixed pointsQ and Py meet and annihilate one
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FIG. 13. Diagram for the bifurcations that replace the transcriti- 0.1
cal riddling bifurcation shown in the Fig. 4, in the case of a small '0 1 X 1o

parameter mismatch=0.998.

FIG. 14. Absorbing aredp (crosshatchedreplacing the syn-
another in an inverse saddle-node bifurcation. At some largethronous staté, (dashedl in the case of a parameter mismaigh
valuee =¢,>¢¢, a new saddle-node bifurcation occurs that =1.002. Parameters aee=3.8, £ =1.55, andp=0.4.
results in the birth of two new fixed pointsepelling node
and saddlgbelow the diagonal. Subsequently, one of themsaddle fixed poinP, destroys the thin invariant absorbing
(the saddlgmoves away from the diagonal and the otttee  areal .
repellop approaches it. An example of the bifurcation dia- Now we consider the case with=1.002. At such a mis-
gram is shown in Fig. 13. match the saddle fixed poif, is placed slightly belowD.

The crisis bifurcation at =¢_,, of the absorbing aref,  Unstable manifolds oP, again bound an invariant absorb-
can be considered as an analog of the hard riddling bifurcaing areal 5, as it is shown in Fig. 14.
tion in the presence of parameter mismatch. Indeed, before With increase of, two fixed pointsP andQ arise above
the bifurcation, the trajectories cannot escape from the thithe diagonal in a saddle-node bifurcation. Then, the repelling
absorbing ared . Asynchronous bursts remain small and node Q moves toward the diagonal. At the same tinfg,
grow smoothly with the magnitude of mismatch and cou-slowly moves down and away from the diagonal, leading to
pling: the maximal amplitude of the bursts is determinedan increasing size of the absorbing afga The bifurcation
(approximately by the deviation of the poinP, from the  diagram is shown in Fig. 15.
diagonal. After the bifurcation the invariance bf is de- With further increase ot, the repelling nodeQ enters

stroyed. The trajectories starting froha, get access to a into the absorbing arel, and destroys it. Again, this is the
neighborhood of the saddle poiRtlocated far away from moment of a crisis bifurcation dfy, which is an analog of
the diagonal. Further, behavior of the trajectories is similar tc¢the hard transcritical riddling bifurcation for the case of pa-
that described in the Sec. llI: following the unstable mani-rameter mismatch. Asynchronous bursts of the trajectories
folds of P they fold atL, or L, and come close to the diag- abruptly grow so that the trajectories can go far away from
onal. Then trajectories spend sofsually long time within  the diagonal. In analogy with the above description, the fur-
the former regionl , before entering a new burst # and  ther behavio.r depends on whether there is an attr&’qgr
this type of behavior will be repeated. This crisisigf can ~ @bove the diagonal, and whether an absorbing atestill
be considered as interior. It replaces the transcritical riddlingXiSts- After the crisis, trajectories from the former absorbing
bifurcation of the symmetrical system in the case when ridareal , may go to the attractoh,, (if it exists), or escape to
dling results in a locally riddled basin.

If, at e=¢¢,, the fixed pointQ brings with it part of the
basin of an attractoA,, developed fromP, or part of the n
basin of infinity, the crisis of 5 is exterior. In this case, after

the crisis, most of the trajectories frofg will move to the
attractorA,, over the diagonal, or escape to infinity, so that Mo Q

they will never come back tb, . The exterior crisis replaces 0 — T --
the transcritical riddling bifurcation of the symmetrical sys- ‘T\
tem in the case when riddling results in a globally riddled ‘ ¥
basin.

Thus, we have exposed the moment when the smoothly Esn e
growing small desynchronous bursts in the system with mis-
match(14) are abruptly changed into the appearance of ex- FIG. 15. Diagram of the bifurcations that replace the transcriti-
cursions far away from the diagonal. This occurs when artal riddling bifurcation shown in Fig. 4 in the case of a small
inverse saddle-node bifurcation of the repel@rand the parameter mismatch=1.002.
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p FIG. 17. Graphs of the eigenvalues, i =1,2 of the fixed point

P=Q calculated for a parametric poinp{e) moving along the
curve of saddle-node bifurcatidifp,e)|e = e¢n(p),0< ps%} (Fig.

16). Codimension-2 bifurcations occur pt~0.033 andp,~0.24.

Parameter ie.=3.8.

FIG. 16. Regions in the parametqr,€) plane for the existence
of the attractorA,,, above the diagonghorizontally hatchedand
attractor Ay, below the diagonalvertically hatchefl Curve of
saddle-node bifurcation of the fixed poirflsand Q is also shown
(denoted bye,). Parameter is=3.8.

of existence for the attractdyy, is vertically crosshatched in
infinity (if the absorbing areal is destroyey or (otherwise¢  Fig. 16.
fill the whole areaA. It was shown above that the fixed poirfisand Q are
Therefore, in both the case$<1 and 5>1, the crisis responsible for the appearance of the attractgfsand Ay,

bifurcation ofi , appears as a hard symmetry-breaking bifur-OUt Of the diagonal foe>1. Let us next study in more detail
cation of the systenil4). Hard transcritical riddling and fol- th€ bifurcations of andQ. For this, the eigenvalues (P)
lowing blowout bifurcations for the casé=1 are replaced a"d7i(Q), i=1,2 have to be examined. They are the roots
by the interior or exterior crisis of the thin invariant- 1.2 Of the quadratic equation

absorbing regioﬁD in place ofly.

24| 2a(2p-1)ey*— =
v P=len =7

VI. ATTRACTORS OUT OF THE DIAGONAL vtdai(e—1)n"
After the above discussion of the phenomena that arise in 1
the presence of subpopulations of maps with slightly differ-  — 1 =0. (19
ent parameters, let us now return to the nf@pin order to
briefly discuss the bifurcations that occur for attracting states
situated outside the main diagorial As described in Sec. Having fixed the nonlinearity parametar we move the
IV, these attractors play an important role in the riddling andparameter pointf,e) along the curve((p,e)|e=gsn(p),0
blowout transitions of the synchronous sthte At the same <p=3} of the saddle-node bifurcatiofsee Fig. 16 where
time they represent a two-dimensional dynamics associateithe fixed pointsP and Q coincide. In Fig. 17 both eigenval-
with the two-cluster state€) in the system ofN globally  uesw»; andv, of the fixed pointP=Q are plotted versus the
coupled mapgl). parameterp e [0,1/2]. One of the eigenvalues equaisl
Consider the case>1. Then, with increasing parameter whereas the other decreases monotonically from 2 -t@ 2
¢ the saddle-node bifurcation occurs at sosweeg,. The  whenp varies from 0 to 0.5.
bifurcation results in the appearance of two fixed pomats For anya e (3;4) there are two singular poin&,(p1,e1)
andQ above the diagondFig. 4). For proper values githe  and B,(p,,s,) such that both eigenvalues above satisfy
fixed point P becomes an attracting node, and later, givegv;|=1. These codimension-2 bifurcation points are of dis-
rise to another attractok,,, which can be regular or cha- tinct types: inB; both eigenvalues equal 1, and inB, they
otic. Finally, the attractoA,, is destroyed in a boundary equal+1 and—1. In the mathematical literature, the singu-
crisis. The region of existence for the attracfqy, is hori-  lar pointB, is referred to as a 1:1 strong resonafég].
zontally crosshatched in Fig. 18ee also Fig. )7 Let us now calculate the eigenvaluesPfwvhen the pa-
At the same time, the repelling nod@ approaches the rameter point p,e) moves along the bifurcations curve of
symmetrical saddle fixed poifg e |, and passes through it stabilization of the fixed poirf® (lower boundary of the hori-
in the transcritical bifurcatioriFig. 4). Q moves below the zontally crosshatched region in Fig.)1l@oth eigenvalues
diagonal and becomes a saddle. With further increase @f  are real here, their graphs are depicted in Fig. 18 as two solid
stabilizes in an inverse subcritical period-doubling bifurca-curves. Alternatively, let the parameter poin,§) move
tion, and hereafter gives birth to the attracfgy, (below the  along the bifurcation curve of destabilization of the fixed
diagona) that may be regular or chaotic. The attracky,,  point P (dashed curve within the horizontally crosshatched
disappears through a boundary-crisis bifurcation. The regioregion in Fig. 16. In this case both eigenvalues Bf are
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FIG. 18. Eigenvalues of the fixed poiRt calculated when pa-
rameter point f,e) moves along the bifurcation curves of stabili-
zation and destabilization d®. A 1:4 strong resonance occurs at y
p3~0.42. Parameter ia=3.8.

complex, graphs of their real and imaginary parts are repre-
sented in Fig. 18 as dashed and dot-dashed curves, respec-
tively.

As one can see from Fig. 18, when fixing parameier 0.7
e (p»;0.5] and increasinges, the fixed pointP stabilizes 0.25 X 0.78
through an inverse subcritical period-doubling bifurcation: g, 19, AttractorA,,, over the diagonal for the ma3) and its
one of its eigenvalues enters the unit circle throughh.  pasin boundary. Parameters are 3.8p=0.4, (@) £=1.71 (after
Whenpe (p1;p2), P is born and becomes stable just in the the destruction of the closed invariant curvés) e =1.744(in the
moment of saddle-node bifurcation at=¢g,: the eigen- moment of boundary crisis bifurcatipn
value of P enters the unit circle through-1. When p
€[0;p,) the fixed pointP does not stabilize at all. Inspec- real and equal te-1) and through a 1:3 strong resonance
tion of Fig. 18 also shows that the fixed poiRtloses its  (when the eigenvalues are complex such that their real parts
stability in a Hopf bifurcation, everywhere except for the are equal to-0.5). Ata=3.8 these codimension-2 bifurca-
point p=p; where the imaginary part is equal to zero andtions take place gh~0.082 andp~0.318, respectively.
hence, a 1:4 strong resonance takes place. With further variations ine, depending orp, different

An example of a chaotic attractéy,, developed fronP  bifurcation transitions of attractors under the diagonal are
is shown in Fig. 1€a). With further increase of this attrac-  observed. They will be reported in more detail elsewhere.
tor grows in size and touches its basin boundary causing the
boundary crisis. The crisis situation is shown in Fig(l9
(the boundary ofA, is created by eight arcs of critical
curvesL,). The transition from fully synchronized behavior to two-

Let us now briefly outline the bifurcations of the fixed cluster dynamics was investigated for a systertlgflobally
point Q and the attractoAy, developed fromQ. After the  coupled logistic maps. If the oscillators happen to distribute
transcritical bifurcation, the saddle fixed poiQt stabilizes themselves symmetrically between the two clusters, the tran-
(for proper values ofp) through an inverse subcritical sition takes place either via a transverse period-doubling or
period-doubling bifurcation(lower boundary curve of the via a transverse pitchfork bifurcation. This situation was re-
vertically crosshatched region in Fig. )Lénd becomes an cently considered by a number of authors, and the main idea
attracting node. With further increase&qfQ changes from a of the present work was to extend these investigations to
stable node to a stable focus and then undergoes a Hopkamining the influence of an asymmetric distribution of os-
bifurcation (dashed bifurcation curve within the vertically cillators between the two clusters, as this is the more generic
crosshatched region in Fig. 1@iving birth to an attractor as well as the physically more realistic case. We also studied
Ay, below the diagonal. Finally, the attractéy, is de- the particular phenomena that can arise in the presence of
stroyed in a boundary crisi@pper bifurcation curve of the two subpopulations of maps with slightly different param-
vertically crosshatched region in Fig.)16 eters.

As it can be concluded by calculating eigenvalueQof Our first observation was that whereas the transverse
depending onp, there is a possibility forQ to bifurcate  period-doubling bifurcation remains essentially unaffected
through a 1:2 strong resonan@ehen both eigenvalues are by an uneven distribution of the oscillators, the nongeneric

VIl. CONCLUSION
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character of the pitchfork bifurcation causes it to be replacedjuences can be observed. Particularly interesting in this con-
by a saddle-node bifurcation in which a saddle cycle and aection was the observation of several codimension-2
repelling point cycle are born off the main diagonal. This isbifurcation points that to our knowledge has not previously
followed by a transcritical riddling bifurcation as the repel- been considered in detail for maps.
ling point causes the synchronization manifold and ex- The concept of an absorbing area has served as one of the
changes its transverse stability for a synchronous saddlieain tools in the above investigations. This concept derives
cycle. An important consequence of this replacement of thérom the theory of noninvertible two-dimensional maps with
bifurcation structure is that instead of a soft riddling transi-the images of the so-called critical curves playing the essen-
tion (after a supercritical pitchfork bifurcatigna hard tran- tial role of nonlinear restraints on the excursions of the tra-
sition is observed. This implies that the bursts away from théectories in phase space. A somewhat similar role is played
synchronous state can attain finite amplitudes immediatelpy the unstable manifolds of saddle cycles situated off the
after the riddling transition. main diagonal. These concepts allowed us to characterize
The transcritical riddling bifurcation itself is nongeneric, both the riddling and the blowout bifurcations in terms of
and in the presence of two subpopulations of maps witttheir type as soft or hard transitions. As demonstrated by our
slightly different parameters, it is replaced either by two sub-investigations, the one-to-two cluster transition in systems of
sequent saddle-node bifurcations, in which the nearly symglobally coupled chaotic maps depends heavily on the sym-
metric synchronized saddle solution existing before the bimetries imposed on the problem. The symmetries associated
furcation is replaced by a repelling solution, or by thewith many cluster dynamics are extremely rich, and a de-
smooth shift of the saddle solution away from the synchrotailed study of the corresponding transitions is far from
nization manifold. In both cases the result is that instead ofrivial. We consider the discussion of one-to-two cluster tran-
the transcritical riddling bifurcation, we observe a symmetry-sitions as only a first step in developing a more detailed
breaking bifurcation in which a narrow invariant region understanding of globally coupled chaotic systems.
around the symmetric chaotic state is destroyed.

Finally, we follovx{ed the bifurcations that take place aftgr ACKNOWLEDGMENTS
the riddling bifurcation for attractors outside the synchroni-
zation manifold. Depending on the parameterand p that Yu.M. and O.P. acknowledge support of the VW-Stiftung

control the coupling strength and the asymmetry in the disund DFG (Sonderforschungsbereich 555We thank K.
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